

4226 Super Corona Dope MG Chemicals UK Limited

Version No: A-2.00

Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

Issue Date: 26/03/2019 Revision Date: 11/05/2021 L.REACH.GB.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier

Product name	4226
Synonyms	SDS Code: 4226-Liquid; 4226-55ML, 4226-1L, 4226-4L UFI: CTA0-N0M5-U00F-R4VJ
Other means of identification	Super Corona Dope

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	High voltage protective coating for electronic and electrical devices				
Uses advised against	FOR INDUSTRIAL USE ONLY				

1.3. Details of the supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited	MG Chemicals (Head office)	
Address	Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	9347 - 193 Street Surrey V4N 4E7 British Columbia Canada	
Telephone	+(44) 1663 362888	+(1) 800-201-8822	
Fax	Not Available	+(1) 800-708-9888	
Website	Not Available	www.mgchemicals.com	
Email	sales@mgchemicals.com	Info@mgchemicals.com	

1.4. Emergency telephone number

Association / Organisation	Verisk 3E (Access code: 335388)				
Emergency telephone numbers	+(44) 20 35147487				
Other emergency telephone numbers	+(0) 800 680 0425				

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Legend:

Classification according to
regulation (EC) No 1272/2008
[CLP] and amendments [1]

H226 - Flammable Liquid Category 3, H315 - Skin Corrosion/Irritation Category 2, H351 - Carcinogenicity Category 2, H361 - Reproductive Toxicity Category 2, H335 - Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), H336 - Specific target organ toxicity - single exposure Category 3 (narcotic effects), H373 - Specific target organ toxicity - repeated exposure Category 2, H412 - Chronic Aquatic Hazard Category 3

1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

2.2. Label elements

Hazard pictogram(s)

Signal word Warning

Hazard statement(s)

H226	Flammable liquid and vapour.
H315	Causes skin irritation.
H351	Suspected of causing cancer.
H361	Suspected of damaging fertility or the unborn child.
H335	May cause respiratory irritation.
H336	May cause drowsiness or dizziness.
H373	May cause damage to organs through prolonged or repeated exposure.

H412 Harmful to aquatic life with long lasting effects.

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.					
P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.					
P260	Do not breathe mist/vapours/spray.					
P271	Use only a well-ventilated area.					
P280	Vear protective gloves/protective clothing/eye protection/face protection/hearing protection.					
P240	Ground and bond container and receiving equipment.					
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.					
P242	Use non-sparking tools.					
P243	Take action to prevent static discharges.					
P273	Avoid release to the environment.					

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/ attention.					
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.					
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.					
P302+P352	F ON SKIN: Wash with plenty of water and soap.					
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].					
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.					
P332+P313	If skin irritation occurs: Get medical advice/attention.					
P362+P364	Take off contaminated clothing and wash it before reuse.					

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.			
P405	Store locked up.			

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

2.3. Other hazards

May produce discomfort of the respiratory system*.

Vapours potentially cause drowsiness and dizziness*.

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classification according to regulation (EC) No 1272/2008 [CLP] and amendments	Nanoform Particle Characteristics
1.1330-20-7 2.215-535-7 3.601-022-00-9 4.Not Available	50	xylene *	Flammable Liquid Category 3, Skin Corrosion/Irritation Category 2, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4; H226, H315, H312, H332 [2]	Not Available
1.100-41-4 2.202-849-4 3.601-023-00-4 4.Not Available	13	ethylbenzene * -	Flammable Liquid Category 2, Aspiration Hazard Category 1, Specific target organ toxicity - repeated exposure Category 2 (hearing organs), Acute Toxicity (Inhalation) Category 4; H225, H304, H373, H332 [2]	Not Available
1.108-88-3 2.203-625-9 3.601-021-00-3 4.Not Available	0.7	toluene * -	Flammable Liquid Category 2, Reproductive Toxicity Category 2, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Specific target organ toxicity - repeated exposure Category 2, Skin Corrosion/Irritation Category 2, Aspiration Hazard Category 1; H225, H361d ***, H336, H373 ***, H315, H304 [2]	Not Available
1.98-82-8 2.202-704-5 3.601-024-00-X 4.Not Available	0.1	cumene * -	Flammable Liquid Category 3, Chronic Aquatic Hazard Category 2, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Aspiration Hazard Category 1; H226, H411, H335, H304 [2]	Not Available
Legend:	Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 3. Classification drawn from C&L * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties			vn from C&L * EU

SECTION 4 First aid measures

4.1. Description of first aid measures

Eye Contact	If this product comes in contact with eyes: • Wash out immediately with water. • If irritation continues, seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

For acute or short term repeated exposures to xylene:

- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- ▶ Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Index Sampling Time Comments

Methylhippu-ric acids in urine 1.5 gm/gm creatinine End of shift
2 mg/min Last 4 hrs of shift

SECTION 5 Firefighting measures

5.1. Extinguishing media

- ► Foam.
- Dry chemical powder
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

5.3. Advice for firefighters

Alert Fire Brigade and tell them location and nature of hazard.

May be violently or explosively reactive.

Wear breathing apparatus plus protective gloves.

Prevent, by any means available, spillage from entering drains or water course.

If safe, switch off electrical equipment until vapour fire hazard removed.

Use water delivered as a fine spray to control fire and cool adjacent area.

Avoid spraying water onto liquid pools.

▶ DO NOT approach containers suspected to be hot.

Cool fire exposed containers with water spray from a protected location.

Fire/Explosion Hazard

- ► Liquid and vapour are flammable.
- ▶ Moderate fire hazard when exposed to heat or flame.
- ▶ Vapour forms an explosive mixture with air.
- ▶ Moderate explosion hazard when exposed to heat or flame.
- ▶ Vapour may travel a considerable distance to source of ignition.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
- ▶ On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include:

carbon monoxide (CO)

carbon dioxide (CO2)

other pyrolysis products typical of burning organic material.

SECTION 6 Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- ► Control personal contact with the substance, by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up.
- ► Collect residues in a flammable waste container.

Chemical Class: aromatic hydrocarbons

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
-----------------	------	-------------	------------	-------------

LAND SPILL - SMALL

Feathers - pillow	1	throw	pitchfork	DGC, RT
cross-linked polymer - particulate	2	shovel	shovel	R,W,SS
cross-linked polymer- pillow	2	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	3	shovel	shovel	R, I, P,
treated clay/ treated natural organic - particulate	3	shovel	shovel	R, I
wood fibre - pillow	4	throw	pitchfork	R, P, DGC, RT

LAND SPILL - MEDIUM

cross-linked polymer -particulate	1	blower	skiploader	R, W, SS
treated clay/ treated natural organic - particulate	2	blower	skiploader	R, I
sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	W, SS, DGC
feathers - pillow	3	throw	skiploader	DGC, RT
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC

Major Spills

Legend

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- ► Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse /absorb vapour.
- Contain spill with sand, earth or vermiculite.
- ▶ Use only spark-free shovels and explosion proof equipment.
- ▶ Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
 Collect solid residues and seal in labelled drums for disposal.

- ▶ Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

7.1. Precautions for safe handling

- Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- Electrostatic discharge may be generated during pumping this may result in fire.
- ▶ Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- Avoid splash filling.
- Do NOT use compressed air for filling discharging or handling operations.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked
- Avoid smoking, naked lights or ignition sources
- Avoid generation of static electricity.
- DO NOT use plastic buckets.
- Earth all lines and equipment
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- DO NOT allow clothing wet with material to stay in contact with skin

Fire and explosion protection

Other information

See section 5

- Store in original containers in approved flammable liquid storage area.
- Store away from incompatible materials in a cool, dry, well-ventilated area.
- ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- No smoking, naked lights, heat or ignition sources.
- Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access
- Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
- Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
 - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors.
 - Keep adsorbents for leaks and spills readily available.
 - Protect containers against physical damage and check regularly for leaks.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, for tank storages (where appropriate):

- Store in grounded, properly designed and approved vessels and away from incompatible materials.
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up.
- ▶ Storage tanks should be above ground and diked to hold entire contents

7.2. Conditions for safe storage, including any incompatibilities

- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C) Suitable container
 - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
 - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
 - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
 - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

- may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride
- attack some plastics, rubber and coatings
- may generate electrostatic charges on flow or agitation due to low conductivity. Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.

For alkyl aromatics:

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- ▶ Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- $\mbox{\ensuremath{\,^{\blacktriangleright}}}$ Microwave conditions give improved yields of the oxidation products.
- Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007

7.3. Specific end use(s)

See section 1.2

SECTION 8 Exposure controls / personal protection

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment
xylene	Dermal 212 mg/kg bw/day (Systemic, Chronic) Inhalation 221 mg/m³ (Systemic, Chronic) Inhalation 221 mg/m³ (Local, Chronic) Inhalation 442 mg/m³ (Systemic, Acute) Inhalation 442 mg/m³ (Local, Acute) Dermal 125 mg/kg bw/day (Systemic, Chronic) * Inhalation 65.3 mg/m³ (Systemic, Chronic) * Oral 12.5 mg/kg bw/day (Systemic, Chronic) * Inhalation 65.3 mg/m³ (Local, Chronic) * Inhalation 260 mg/m³ (Systemic, Acute) * Inhalation 260 mg/m³ (Local, Acute) *	0.327 mg/L (Water (Fresh)) 0.327 mg/L (Water - Intermittent release) 0.327 mg/L (Water (Marine)) 12.46 mg/kg sediment dw (Sediment (Fresh Water)) 12.46 mg/kg sediment dw (Sediment (Marine)) 2.31 mg/kg soil dw (Soil) 6.58 mg/L (STP)
ethylbenzene	Dermal 180 mg/kg bw/day (Systemic, Chronic) Inhalation 77 mg/m³ (Systemic, Chronic) Inhalation 293 mg/m³ (Local, Acute) Inhalation 15 mg/m³ (Systemic, Chronic) * Oral 1.6 mg/kg bw/day (Systemic, Chronic) *	0.1 mg/L (Water (Fresh)) 0.01 mg/L (Water - Intermittent release) 0.1 mg/L (Water (Marine)) 13.7 mg/kg sediment dw (Sediment (Fresh Water)) 1.37 mg/kg sediment dw (Sediment (Marine)) 2.68 mg/kg soil dw (Soil) 9.6 mg/L (STP) 0.02 g/kg food (Oral)
toluene	Dermal 384 mg/kg bw/day (Systemic, Chronic) Inhalation 192 mg/m³ (Systemic, Chronic) Inhalation 192 mg/m³ (Local, Chronic) Inhalation 384 mg/m³ (Systemic, Acute) Inhalation 384 mg/m³ (Local, Acute) Dermal 226 mg/kg bw/day (Systemic, Chronic) * Inhalation 56.5 mg/m³ (Systemic, Chronic) * Oral 8.13 mg/kg bw/day (Systemic, Chronic) * Inhalation 56.5 mg/m³ (Local, Chronic) * Inhalation 226 mg/m³ (Systemic, Acute) * Inhalation 226 mg/m³ (Local, Acute) *	0.68 mg/L (Water (Fresh)) 0.68 mg/L (Water - Intermittent release) 0.68 mg/L (Water (Marine)) 16.39 mg/kg sediment dw (Sediment (Fresh Water)) 16.39 mg/kg sediment dw (Sediment (Marine)) 2.89 mg/kg soil dw (Soil) 13.61 mg/L (STP)
cumene	Dermal 15.4 mg/kg bw/day (Systemic, Chronic) Inhalation 100 mg/m³ (Systemic, Chronic) Inhalation 250 mg/m³ (Local, Acute) Dermal 1.2 mg/kg bw/day (Systemic, Chronic) * Inhalation 16.6 mg/m³ (Systemic, Chronic) * Oral 5 mg/kg bw/day (Systemic, Chronic) *	0.035 mg/L (Water (Fresh)) 0.004 mg/L (Water - Intermittent release) 0.012 mg/L (Water (Marine)) 3.22 mg/kg sediment dw (Sediment (Fresh Water)) 0.322 mg/kg sediment dw (Sediment (Marine)) 0.624 mg/kg soil dw (Soil) 200 mg/L (STP)

^{*} Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA

INONEDIENT DATA						
Source	Ingredient	Material name	TWA	STEL	Peak	Notes
UK Workplace Exposure Limits (WELs)	xylene	Xylene, o-,m-,p- or mixed isomers	50 ppm / 220 mg/m3	441 mg/m3 / 100 ppm	Not Available	Sk, BMGV
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	xylene	Xylene (mixed isomers, pure)	50 ppm / 221 mg/m3	442 mg/m3 / 100 ppm	Not Available	Skin
UK Workplace Exposure Limits (WELs)	ethylbenzene	Ethylbenzene	100 ppm / 441 mg/m3	552 mg/m3 / 125 ppm	Not Available	Sk
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	ethylbenzene	Ethyl benzene	100 ppm / 442 mg/m3	884 mg/m3 / 200 ppm	Not Available	Skin

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
UK Workplace Exposure Limits (WELs)	toluene	Toluene	50 ppm / 191 mg/m3	384 mg/m3 / 100 ppm	Not Available	Sk
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	toluene	Toluene	50 ppm / 192 mg/m3	384 mg/m3 / 100 ppm	Not Available	Skin
UK Workplace Exposure Limits (WELs)	cumene	Cumene	25 ppm / 125 mg/m3	250 mg/m3 / 50 ppm	Not Available	Sk
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	cumene	2-Phenylpropane (Cumene)	10 ppm / 50 mg/m3	250 mg/m3 / 50 ppm	Not Available	skin
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	cumene	Cumene	20 ppm / 100 mg/m3	250 mg/m3 / 50 ppm	Not Available	Skin

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
xylene	Not Available	Not Available	Not Available
ethylbenzene	Not Available	Not Available	Not Available
toluene	Not Available	Not Available	Not Available
cumene	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
xylene	900 ppm	Not Available
ethylbenzene	800 ppm	Not Available
toluene	500 ppm	Not Available
cumene	900 ppm	Not Available

MATERIAL DATA

IFRA Prohibited Fragrance Substance

The International Fragrance Association (IFRA) Standards form the basis for the globally accepted and recognized risk management system for the safe use of fragrance ingredients and are part of the IFRA Code of Practice. This is the self-regulating system of the industry, based on risk assessments carried out by an independent Expert Panel for xylenes:

IDLH Level: 900 ppm

Odour Threshold Value: 20 ppm (detection), 40 ppm (recognition)

NOTE: Detector tubes for o-xylene, measuring in excess of 10 ppm, are available commercially. (m-xylene and p-xylene give almost the same response).

Xylene vapour is an irritant to the eyes, mucous membranes and skin and causes narcosis at high concentrations. Exposure to doses sufficiently high to produce intoxication and unconsciousness also produces transient liver and kidney toxicity. Neurologic impairment is NOT evident amongst volunteers inhaling up to 400 ppm though complaints of ocular and upper respiratory tract irritation occur at 200 ppm for 3 to 5 minutes.

Exposure to xylene at or below the recommended TLV-TWA and STEL is thought to minimise the risk of irritant effects and to produce neither significant narcosis or chronic injury. An earlier skin notation was deleted because percutaneous absorption is gradual and protracted and does not substantially contribute to the dose received by inhalation.

Odour Safety Factor(OSF)

Odour Safety Factor(O

OSF=4 (XYLENE)

for ethyl benzene:

Odour Threshold Value: 0.46-0.60 ppm

NOTE: Detector tubes for ethylbenzene, measuring in excess of 30 ppm, are commercially available.

Ethyl benzene produces irritation of the skin and mucous membranes and appears to produce acute and chronic effects on the central nervous system. Animal experiments also suggest the effects of chronic exposure include damage to the liver, kidneys and testes. In spite of structural similarities to benzene, the material does not appear to cause damage to the haemopoietic system. The TLV-TWA is thought to be protective against skin and eye irritation. Exposure at this concentration probably will not result in systemic effects. Subjects exposed at 200 ppm experienced transient irritation of the eyes; at 1000 ppm there was eye irritation with profuse lachrymation; at 2000 ppm eye irritation and lachrymation were immediate and severe accompanied by moderate nasal irritation, constriction in the chest and vertigo; at 5000 ppm exposure produced intolerable irritation of the eyes and throat.

Odour Safety Factor(OSF)
OSF=43 (ETHYL BENZENE)

For toluene:

Odour Threshold Value: 0.16-6.7 (detection), 1.9-69 (recognition)

NOTE: Detector tubes measuring in excess of 5 ppm, are available.

High concentrations of toluene in the air produce depression of the central nervous system (CNS) in humans. Intentional toluene exposure (glue-sniffing) at maternally-intoxicating concentration has also produced birth defects. Foetotoxicity appears at levels associated with CNS narcosis and probably occurs only in those with chronic toluene-induced kidney failure. Exposure at or below the recommended TLV-TWA is thought to prevent transient headache and irritation, to provide a measure of safety for possible disturbances to human reproduction, the prevention of reductions in cognitive responses reported amongst humans inhaling greater than 40 ppm, and the significant risks of hepatotoxic, behavioural and nervous system effects (including impaired reaction time and incoordination). Although toluene/ethanol interactions are well recognised, the degree of protection afforded by the TLV-TWA among drinkers is not known.

Odour Safety Factor(OSF)

OSF=17 (TOLUENE)

For cumene

Odour Threshold Value: 0.008-0.132 ppm (detection), 0.047 ppm (recognition)

Exposure at or below the TLV-TWA is thought to prevent induction of narcosis.

8.2. Exposure controls

8.2.1. Appropriate engineering controls

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

8.2.2. Personal protection

Eye and face protection

- ► Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Hands/feet protection

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on

consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

Body protection

See Other protection below

Overalls

- PVC Apron.
- ▶ PVC protective suit may be required if exposure severe.
- ► Eyewash unit.

Other protection

- Ensure there is ready access to a safety shower
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

Forsberg Clothing Performance Index'.

The effect(s) of the following substance(s) are taken into account in the *computer*-

4226 Super Corona Dope

Material	СРІ
BUTYL	С
BUTYL/NEOPRENE	С
CPE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON	С
VITON/CHLOROBUTYL	С
VITON/NEOPRENE	С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	A-AUS / Class 1	-	A-PAPR-AUS / Class 1
up to 25 x ES	Air-line*	A-2	A-PAPR-2
up to 50 x ES	-	A-3	-
50+ x ES	-	Air-line**	-

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- ▶ Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Appearance	Clear		
Physical state	Liquid	Relative density (Water= 1)	0.93
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	2 ppm	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	>20.5
Initial boiling point and boiling range (°C)	>111	Molecular weight (g/mol)	Not Available
Flash point (°C)	27	Taste	Not Available
Evaporation rate	~0.8 (ButAc=1) BuAC = 1	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	7	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	1.2	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	3.7	VOC g/L	Not Available
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 Toxicological information

11.1. Information on toxicological effects

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics.

Systemic poisoning produced by general anaesthesia is characterised by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, tinnitus, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness and respiratory depression and arrest. Cardiac arrest may result from cardiovascular collapse. Bradycardia, and hypotension may also be produced.

Inhaled

Inhaled alkylbenzene vapours cause death in animals at air levels that are relatively similar (typically LC50s are in the range 5000 -8000 ppm for 4 to 8 hour exposures). It is likely that acute inhalation exposure to alkylbenzenes resembles that to general anaesthetics.

Alkylbenzenes are not generally toxic other than at high levels of exposure. This may be because their metabolites have a low order of toxicity and are easily excreted. There is little or no evidence to suggest that metabolic pathways can become saturated leading to spillover to alternate pathways. Nor is there evidence that toxic reactive intermediates, which may produce subsequent toxic or mutagenic effects, are formed Inhalation hazard is increased at higher temperatures.

Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

When humans were exposed to the 100 and 200 ppm for 8 hours about 45-65% is retained in the body. Only traces of unchanged ethyl benzene are excreted in expired air following termination of inhalation exposure.

Humans exposed to concentrations of 23-85 ppm excreted most of the retained dose in the urine (mainly as metabolites). Guinea pigs that died from exposure had intense congestion of the lungs and generalised visceral hyperaemia. Rats exposed for three days at 8700 mg/m3 (2000 ppm) showed changes in the levels of dopamine and noradrenaline in various parts of the brain.

Headache, fatigue, lassitude, irritability and gastrointestinal disturbances (e.g., nausea, anorexia and flatulence) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Transient memory loss, renal impairment, temporary confusion and some evidence of disturbance of liver function was reported in three workers overcome by gross exposure to xylene (10000 ppm). One worker died and autopsy revealed pulmonary congestion, oedema and focal alveolar haemorrhage. Volunteers inhaling xylene at 100 ppm for 5 to 6 hours showed changes in manual coordination reaction time and slight ataxia. Tolerance developed during the workweek but was lost over the weekend. Physical exercise may antagonise this effect. Xylene body burden in humans exposed to 100 or 200 ppm xylene in air depends on the amount of body fat with 4% to 8% of total absorbed xylene accumulating in adipose tissue.

Xylene is a central nervous system depressant. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.

Ingestion

Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result.

Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis).

The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

The material may accentuate any pre-existing dermatitis condition

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Toxic effects may result from skin absorption

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

The mean rate of absorption of liquid ethyl benzene applied to 17.3 cm2 area of the forearm of seven volunteers for 10-15 minutes was determined to be 38 mg/cm2/hr. Immersion of the whole hand in aqueous solutions of ethyl benzene (112-156 mg/l) for 1 hour yielded mean absorption rates of 118 and 215.7 ug/cm2/hr. The rate of absorption is thus greater than that of aniline, benzene, nitrobenzene, carbon disulfide and styrene.

Skin Contact

Repeated application of the undiluted product to the abdominal area of rabbits (10-20 applications over 2-4 weeks) resulted in erythema, oedema and superficial necrosis. The material did not appear to be absorbed through the skin in sufficient quantity to produce outward signs of toxicity. The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either

- produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Eve

Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).

Two drops of the ethylbenzene in to the conjunctival sac produced only slight irritation of the conjunctival membrane but no corneal injury.

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems.

Exposure to the material may cause concerns for human fertility, generally on the basis that results in animal studies provide sufficient evidence to cause a strong suspicion of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms.

Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers.

Chronic

 $\label{eq:continuous} \mbox{ Xylene has been classed as a developmental toxin in some jurisdictions.}$

Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex.

Industrial workers exposed to a maximum level of ethylbenzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers. Prolonged and repeated exposure may be harmful to the central nervous system (CNS), upper respiratory tract, and/ or may cause liver disorders. It may also cause drying, scaling and blistering of the skin.

Rats and mice exposed to ethylbenzene for 6 hours daily, 5 days a week for 104 and 103 weeks respectively showed a statistically significant increase in kidney tumours in male and female rats, lung tumours in male mice, and liver tumours in female mice exposed to 750 ppm ethylbenzene.

Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]

11.2.1. Endocrine Disruption Properties

Not Available

4226	Super	Corona	Done

TOXICITY	IRRITATION
Not Available	Not Available

	TOXICITY		IRRITATION
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]		Eye (human): 200 ppm irritant
	Inhalation(Rat) LC50; 5922 ppm4h ^[1]		Eye (rabbit): 5 mg/24h SEVERE
xylene	Oral(Mouse) LD50; 1548 mg/kg ^[2]		Eye (rabbit): 87 mg mild
			Eye: adverse effect observed (irritating) ^[1]
			Skin (rabbit):500 mg/24h moderate
			Skin: adverse effect observed (irritating) ^[1]
	TOXICITY	IRF	RITATION
	Dermal (rabbit) LD50: >5000 mg/kg ^[2]	Eye	e (rabbit): 500 mg - SEVERE
ethylbenzene	Inhalation(Rat) LC50; 17.2 mg/l4h ^[2]	Eye	e: no adverse effect observed (not irritating) ^[1]
·	Oral(Rat) LD50; ~3523 mg/kg ^[2]		n (rabbit): 15 mg/24h mild
			n: no adverse effect observed (not irritating) ^[1]
			(g)
	TOXICITY		RRITATION
	Dermal (rabbit) LD50: >5000 mg/kg ^[1]		Eye (rabbit): 2mg/24h - SEVERE
	Inhalation(Rat) LC50; 12.5-28.8 mg/l4h ^[2]		Eye (rabbit):0.87 mg - mild
	Oral(Rat) LD50; 636 mg/kg ^[2]		Eye (rabbit):100 mg/30sec - mild
toluene	Crai(Nat) ED50, 050 mg/kg- 1		Eye: adverse effect observed (irritating) ^[1]
10.40.10			Skin (rabbit):20 mg/24h-moderate
	Skin (rabbit):500 mg - moderate		
			Skin: adverse effect observed (irritating) ^[1]
			Skin: no adverse effect observed (not irritating) ^[1]
			3)
	TOXICITY	IRRI	TATION
	Dermal (rabbit) LD50: 2000 mg/kg ^[2]		(rabbit): 500 mg/24h mild
	Inhalation(Rat) LC50; 39 mg/L4h ^[2]		(rabbit): 86 mg mild
cumene	Oral(Rat) LD50; ~1400 mg/kg ^[1]		no adverse effect observed (not irritating) ^[1]
	Crai(Nat) EBSO, 11400 Hig/kg-1		(rabbit): 10 mg/24h mild
			(rabbit):100 mg/24h moderate
			no adverse effect observed (not irritating) ^[1]
			(g/
Legend:	Value obtained from Europe ECHA Registered Subspecified data extracted from RTECS - Register of Tox		e toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise emical Substances
	.,		
	Reproductive effector in rats		
XYLENE	The substance is classified by IARC as Group 3:		
	NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limit	ted in animal t	esting.
	Liver changes, utheral tract, effects on fertility, foetotox	cicity, specific	developmental abnormalities (musculoskeletal system) recorded.
			posure and may produce a contact dermatitis (nonallergic). This form of elling epidermis. Histologically there may be intercellular oedema of the
ETHYLBENZENE	spongy layer (spongiosis) and intracellular oedema of	the epidermis.	
	NOTE: Substance has been shown to be mutagenic in cellular DNA.	n at least one a	assay, or belongs to a family of chemicals producing damage or change to
	For toluene:		
	Acute Toxicity Humans exposed to intermediate to high levels of tolur	ene for short n	eriods of time experience adverse central nervous system effects ranging
	from headaches to intoxication, convulsions, narcosis,	and death. Si	milar effects are observed in short-term animal studies.
	Humans - Toluene ingestion or inhalation can result in ingestion of about 60 mL resulted in fatal nervous syst		all nervous system depression, and in large doses, can act as a narcotic. The in within 30 minutes in one reported case.
	Constriction and necrosis of myocardial fibers, marked		r, congestion and haemorrhage of the lungs and acute tubular necrosis were
	found on autopsy. Central nervous system effects (headaches, dizziness	, intoxication)	and eye irritation occurred following inhalation exposure to 100 ppm toluene
TOLLIENE	6 hours/day for 4 days.		

TOLUENE

6 hours/day for 4 days.

Exposure to 600 ppm for 8 hours resulted in the same and more serious symptoms including euphoria, dilated pupils, convulsions, and nausea . Exposure to 10,000-30,000 ppm has been reported to cause narcosis and death

Exposure to 10,000-30,000 ppm has been reported to cause narcosis and dear Toluene can also strip the skin of lipids causing dermatitis

Animals - The initial effects are instability and incoordination, lachrymation and sniffles (respiratory exposure), followed by narcosis. Animals die of respiratory failure from severe nervous system depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 1600 ppm, 18-20 hours/day for 3 days

Subchronic/Chronic Effects:

Repeat doses of toluene cause adverse central nervous system effects and can damage the upper respiratory system, the liver, and the kidney. Adverse effects occur as a result from both oral and the inhalation exposures. A reported lowest-observed-effect level in humans for adverse neurobehavioral effects is 88 ppm.

Humans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxicity and, in one case, was a cardiac sensitiser and fatal cardiotoxin.

Neural and cerebellar dystrophy were reported in several cases of habitual 'glue sniffing.' An epidemiological study in France on workers chronically exposed to toluene fumes reported leukopenia and neutropenia. Exposure levels were not given in the secondary reference; however, the average urinary excretion of hippuric acid, a metabolite of toluene, was given as 4 g/L compared to a normal level of 0.6 g/L

Animals - The major target organs for the subchronic/chronic toxicity of toluene are the nervous system, liver, and kidney. Depressed immune response has been reported in male mice given doses of 105 mg/kg/day for 28 days. Toluene in corn oil administered to F344 male and female rats by gavage 5 days/week for 13 weeks, induced prostration, hypoactivity, ataxia, piloerection, lachrymation, excess salivation, and body tremors at doses 2500 mg/kg. Liver, kidney, and heart weights were also increased at this dose and histopathologic lesions were seen in the liver, kidneys, brain and urinary bladder. The no-observed-adverse effect level (NOAEL) for the study was 312 mg/kg (223 mg/kg/day) and the lowest-observed-adverse effect level (LOAEL) for the study was 625 mg/kg (446 mg/kg/day) .

Developmental/Reproductive Toxicity

Exposures to high levels of toluene can result in adverse effects in the developing human foetus. Several studies have indicated that high levels of toluene can also adversely effect the developing offspring in laboratory animals.

Humans - Variable growth, microcephaly, CNS dysfunction, attentional deficits, minor craniofacial and limb abnormalities, and developmental delay were seen in three children exposed to toluene in utero as a result of maternal solvent abuse before and during pregnancy Animals - Sternebral alterations, extra ribs, and missing tails were reported following treatment of rats with 1500 mg/m3 toluene 24 hours/day during days 9-14 of gestation. Two of the dams died during the exposure. Another group of rats received 1000 mg/m3 8 hours/day during days 1-21 of gestation. No maternal deaths or toxicity occurred, however, minor skeletal retardation was present in the exposed fetuses. CFLP Mice were exposed to 500 or 1500 mg/m3 toluene continuously during days 6-13 of pregnancy. All dams died at the high dose during the first 24 hours of exposure, however none died at 500 mg/m3. Decreased foetal weight was reported, but there were no differences in the incidences of skeletal malformations or anomalies between the treated and control offspring.

Absorption - Studies in humans and animals have demonstrated that toluene is readily absorbed via the lungs and the gastrointestinal tract. Absorption through the skin is estimated at about 1% of that absorbed by the lungs when exposed to toluene vapor.

Dermal absorption is expected to be higher upon exposure to the liquid; however, exposure is limited by the rapid evaporation of toluene.

Distribution - In studies with mice exposed to radiolabeled toluene by inhalation, high levels of radioactivity were present in body fat, bone marrow, spinal nerves, spinal cord, and brain white matter. Lower levels of radioactivity were present in blood, kidney, and liver. Accumulation of toluene has generally been found in adipose tissue, other tissues with high fat content, and in highly vascularised tissues.

Metabolism - The metabolites of inhaled or ingested toluene include benzyl alcohol resulting from the hydroxylation of the methyl group. Further oxidation results in the formation of benzaldehyde and benzoic acid. The latter is conjugated with glycine to yield hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. o-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites

Excretion - Toluene is primarily (60-70%) excreted through the urine as hippuric acid. The excretion of benzoyl glucuronide accounts for 10-20%, and excretion of unchanged toluene through the lungs also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours after exposure.

Cumene is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in experimental animals. Cumene caused tumours at several tissue sites, including lung and liver in mice and kidney in male rats. Several proposed mechanisms of carcinogenesis support the relevance to humans of lung and liver tumours in experimental animals. Specifically, there is evidence that humans and experimental animals metabolise cumene through similar metabolic pathways. There is also evidence that cumene is genotoxic in some tissues, based on findings of DNA damage in rodent lung and liver. Furthermore, mutations of the K-ras oncogene and p53 tumor-suppressor gene observed in cumene-induced lung tumours in mice, along with altered expression of many other genes, resemble molecular alterations found in human lung and other cancers. The relevance of the kidney tumors to cancer in humans is uncertain; there is evidence that a species-specific mechanism not relevant to humans contributes to their induction, but it is possible that other mechanisms relevant to humans, such as genotoxicity, may also contribute to kidney-tumour formation in male rats.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

For aromatic terpenes:

Acute toxicity: Mammalian LD50 for p-cymene have shown it to have low toxic potential. Similar studies with cumene have concurred with these results

In general, the studies indicate that p-cymene (p-methylisopropylbenzene) or cumene (isopropylbenzene) is rapidly absorbed by oral or inhalation routes. They undergo oxidation (hydroxylation) of the side chain isopropyl substituent and, in the case of p-cymene, the methyl substituent to yield polar oxygenated metabolites. These metabolites are either excreted unchanged in the urine or undergo Phase II conjugation with glucuronic acid and/or glycine followed by excretion in the urine. Unchanged p-cymene or cumene were not detected in the urine or faeces. Humans (5 males and 5 females/group) exposed to an atmosphere containing 49, 98, or 147 ppm cumene for 7 hours showed 64% absorption at 0.5 hours and 45% at 7 hours. Maximum excretion is observed at 6 to 8 hours and is essentially complete at 48 hours. Approximately 35% of the dose inhaled was excreted as 2-phenyl-2-propanol

Repeat Dose Toxicity: Subacute Studies: Groups of 7 to 12 male rats were exposed to 0, 50, or 250 ppm of p-cymene for 6 hours/day, 5 days/week for 4 weeks with an 8-week recovery period. there was no overt toxicity in the treated rats and no effect on body weight or terminal weight of the brain, cerebellum or whole brain. There was also no effect on regional enzyme activities, regional protein synthesis or regional neurotransmitter concentrations.

Cumene has been tested by the National Toxicology Program (NTP) in both rats and mice. Animals were exposed to up to 4,000 ppm cumene by whole-body inhalation for 12-13 days over a period of 16-17 days. In rats, all animals died at 4,000 ppm, and about half the animals died at the next exposure concentration (2,000 ppm). Varying degrees of ataxia were reported in surviving rats exposed to 500 to 2,000 ppm cumene. Increased relative liver and kidney weights were reported in rats exposed to cumene. In exposed male rats, hyaline droplets in the renal cortical tubules were reported. At 2,000 ppm, superlative inflammation of the lung was reported in 40% of the rats. In mice, all animals died at the 2 highest exposures (2,000 and 4,000 ppm). At 1,000 ppm, 80% of the female mice died and male mice showed varying degrees of ataxia. Increased relative liver and kidney weights were reported in mice exposed to cumene. Decreased thymus weight was reported in male mice exposed to 1,000 ppm of cumene. No histopathological findings accompanied the organ weight changes. A NOAEL of 1,000 ppm was determined for female rats and male mice and a NOAEL of 500 ppm was determined for female mice based on mortality and histopathological finding finding in the rate of the program of the

Chronic toxicity: The US EPA concluded that there is some evidence that suggests that cumene is not likely to produce a carcinogenic response (i.e., numerous genotoxic tests, including gene mutation, chromosomal aberration, and primary DNA damage tests, all but one of which were negative or not reproducible) In addition, EPA noted that cumene does not appear to metabolise to highly reactive chemical species and in terms of metabolism, cumene is analogous to methyl benzene for which a 2-year inhalation study was conducted by NTP and no evidence of carcinogenic activity was reported in either rats or mice.

Given that the only structural difference between p-cymene and cumene is the presence of a second alkyl substituent (isopropylbenzene versus p-methylisopropylbenzene), similar conclusions can be drawn for p-cymene, particularly since the pharmacokinetic, metabolic and toxicologic data that are available support this conclusion.

Reproductive toxicity: Taking into consideration the rapid metabolism and excretion of cumene, the US EPA concluded, "cumene has low

CUMENE

potential for reproductive toxicity."

Developmental toxicity: Even at maternally toxic concentrations exposure to cumene vapor did not produce developmental toxicity in rats. However the US EPA determined that the changes in gestational parameters of the rabbits, though not significant, were consistent in indicating possible developmental effects and therefore set the NOAEL in rabbits for both developmental and maternal effects at 1,206 ppm and the LOAEL at 2,297 ppm, respectively (as reported in EPA, 1997). Since both cumene and p-cymene exhibit such similar pharmacokinetic and metabolic profiles, and show no evidence of toxicity at levels of exposure similar to those experienced by humans, further teratogenic or developmental testing is not recommended

Genotoxicity: The genotoxicity database on p-cymene and cumene shows no mutagenic potential in the Ames assay. In cytogenetic assays, there is no evidence of a genotoxic potential in vitro. In whole animals, the genotoxicity results for cumene are mixed showing weakly positive results in micronuclei induction in rats, but no evidence of genotoxicity in mice.

Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen

[National Toxicology Program: U.S. Dep. of Health & Human Services 2002]

Ethylbenzene is readily absorbed following inhalation, oral, and dermal exposures, distributed throughout the body, and excreted primarily through urine. There are two different metabolic pathways for ethylbenzene with the primary pathway being the alpha-oxidation of ethylbenzene to 1-phenylethanol, mostly as the R-enantiomer. The pattern of urinary metabolite excretion varies with different mammalian species. In humans, ethylbenzene is excreted in the urine as mandelic acid and phenylgloxylic acids; whereas rats and rabbits excrete hippuric acid and phenaceturic acid as the main metabolites. Ethylbenzene can induce liver enzymes and hence its own metabolism as well as the metabolism of other substances.

Ethylbenzene has a low order of acute toxicity by the oral, dermal or inhalation routes of exposure. Studies in rabbits indicate that ethylbenzene is irritating to the skin and eyes. There are numerous repeat dose studies available in a variety of species, these include: rats, mice, rabbits, guinea pig and rhesus monkeys.

4226 Super Corona Dope & ETHYLBENZENE

Hearing loss has been reported in rats (but not guinea pigs) exposed to relatively high exposures (400 ppm and greater) of ethylbenzene In chronic toxicity/carcinogenicity studies, both rats and mice were exposed via inhalation to 0, 75, 250 or 750 ppm for 104 weeks. In rats, the kidney was the target organ of toxicity, with renal tubular hyperplasia noted in both males and females at the 750 ppm level only. In mice, the liver and lung were the principal target organs of toxicity. In male mice at 750 ppm, lung toxicity was described as alveolar epithelial metaplasia, and liver toxicity was described as hepatocellular syncitial alteration, hypertrophy and mild necrosis; this was accompanied by increased follicular cell hyperplasia in the thyroid. As a result the NOAEL in male mice was determined to be 250 ppm. In female mice, the 750 ppm dose group had an increased incidence of eosinophilic foci in the liver (44% vs 10% in the controls) and an increased incidence in follicular cell hyperplasia in the thyroid gland.

In studies conducted by the U.S. National Toxicology Program, inhalation of ethylbenzene at 750 ppm resulted in increased lung tumors in male mice, liver tumors in female mice, and increased kidney tumors in male and female rats. No increase in tumors was reported at 75 or 250 ppm. Ethylbenzene is considered to be an animal carcinogen, however, the relevance of these findings to humans is currently unknown. Although no reproductive toxicity studies have been conducted on ethylbenzene, repeated-dose studies indicate that the reproductive organs are not a target for ethylbenzene toxicity

Ethylbenzene was negative in bacterial gene mutation tests and in a yeast assay on mitotic recombination.

XYLENE & ETHYLBENZENE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

XYLENE & TOLUENE &

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

ETHYLBENZENE & CUMENE

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

Acute Toxicity	×	Carcinogenicity	✓
Skin Irritation/Corrosion	→	Reproductivity	✓
Serious Eye Damage/Irritation	×	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	×

Legend:

★ - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

12.1. Toxicity

4226 Sumar Carana Dana	Enapoint	lest Duration (nr)	Species	value		Source	
4226 Super Corona Dope	Not Available	Not Available	Not Available	Not Available		Not Available	e
	Endpoint	Test Duration (hr)	Species		Value	s	Source
xylene	EC50(ECx)	Not Reportedh	Fish		0.017mg/	L 4	
	EC50	72h	Algae or other aquatic pla	ants	4.6mg/l	2	!
	EC50	48h	Crustacea		1.8mg/l	2	!
	LC50 9	96h	Fish		2.6mg/l	2	

ethylbenzene

Endpoint	Test Duration (hr)	Species	Value	Source
NOEC(ECx)	720h	Fish	0.002mg/L	4
EC50	72h	Algae or other aquatic plants	>1.902mg/L	4
EC50	48h	Crustacea	1.37-4.4mg/l	4
LC50	96h	Fish	1.129-1.259mg/L	4
EC50	96h	Algae or other aquatic plants	>1.902mg/L	4

Endpoint	Test Duration (hr)	Species	Value	Source
NOEC(ECx)	96h	Crustacea	0.104mg/L	4
EC50	48h	Crustacea	3.78mg/L	5
LC50	96h	Fish	>1.055<1.809mg/L	4
EC50	96h	Algae or other aquatic plants	>1.632mg/L	4

cumene

toluene

Endpoint	Test Duration (hr)	Species	Value	Source
NOEC(ECx)	96h	Crustacea	0.4mg/l	1
EC50	72h	Algae or other aquatic plants	1.29mg/l	2
LC50	96h	Fish	2.7mg/l	2
EC50	48h	Crustacea	4mg/l	1

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For aromatic hydrocarbons:

Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shrimp (Palaemonetes pugio) and brown shrimp (Penaeus aztecus) was dimethylnaphthalenes > methylnaphthalenes.

Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as phenanthrene. The heavier (4-, 5-, and 6-ring) PAHs are more persistent than the lighter (2- and 3-ring) PAHs and tend to have greater carcinogenic and other chronic impact potential. PAHs in general are more frequently associated with chronic risks. These risks include cancer and often are the result of exposures to complex mixtures of chronic-risk aromatics (such as PAHs, alkyl PAHs, benzenes, and alkyl benzenes), rather than exposures to low levels of a single compound.

Anthracene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Benchmarks developed in the absence of UV light may be under-protective, and biological resources in strong sunlight are at more risk than those that are not.

Volatile furandiones and aldehydes are significant atmospheric oxidation products of aromatic compounds. Highly acidic dicarboxylic acids produced by the reactions between furandiones and water were shown to rapidly acidify an aqueous phase

For xylenes: log Koc: 2.05-3.08 Koc: 25.4-204 Half-life (hr) air: 0.24-42

Half-life (hr) H2O surface water : 24-672

Half-life (hr) H2O ground : 336-8640 Half-life (hr) soil : 52-672 Henry's Pa m3 /mol: 637-879

Henry's Pa m3 /mol: 637-879 Henry's atm m3 /mol: 7.68E-03 BOD 5 if unstated: 1.4,1% COD: 2.56,13%

ThOD: 3.125 BCF: 23 log BCF: 1.17-2.41 Environmental Fate

Terrestrial fate:: Measured Koc values of 166 and 182, indicate that 3-xylene is expected to have moderate mobility in soil. Volatilisation of p-xylene is expected to be important from moist soil surfaces given a measured Henry's Law constant of 7.18x10-3 atm-cu m/mole. The potential for volatilisation of 3-xylene from dry soil surfaces may exist based on a measured vapor pressure of 8.29 mm Hg. p-Xylene may be degraded during its passage through soil). The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. p-Xylene, present in soil samples contaminated with jet fuel, was completely degraded aerobically within 5 days. In aquifer studies under anaerobic conditions, p-xylene was degraded, usually within several weeks, with the production of 3-methylbenzylsuccinic acid, 3-methylbenzylsuccinic acid, 3-methylbenzoate, and 3-methylbenzylethyde as metabolites.

Aquatic fate: Koc values indicate that p-xylene may adsorb to suspended solids and sediment in water. p-Xylene is expected to volatilise from water surfaces based on the measured Henry's Law constant. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. BCF values of 14.8, 23.4, and 6, measured in goldfish, eels, and clams, respectively, indicate that bioconcentration in aquatic organisms is low. p-Xylene in water with added humic substances was 50% degraded following 3 hours irradiation suggesting that indirect photooxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. Although p-xylene is biodegradable and has been observed to degrade in pond water, there are insufficient data to assess the rate of this process in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater in several studies; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high.

Atmospheric fate:

Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere primarily by reaction with photochemically-produced hydroxyl radicals, with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylenes' susceptibility to photochemical oxidation in the troposphere is to the extent that they may contribute to photochemical smog formation. According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and from its vapour pressure, p-xylene, is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase p-xylene is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 16 hours. A half-life of 1.0 hr in summer and 10 hr in winter was measured for the reaction of p-xylene with photochemically-produced hydroxyl radicals. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers, with loss rates varying from 9-42% per hr. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylghoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethylphenol, e-hitro-2,6-dimethylphenol, 6-nitro-2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol.

Ecotoxicity:

for xylene

Fish LC50 (96 h) Pimephales promelas 13.4 mg/l; Oncorhyncus mykiss 8.05 mg/l; Lepomis macrochirus 16.1 mg/l (all flow through values); Pimephales promelas 26.7 (static)

Daphnia EC50 948 h): 3.83 mg/l

Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/l

Gammarus lacustris LC50 (48 h): 0.6 mg/l

For ethylbenzene: log Kow, 3.15 log Koc: 1.98-3.04 Koc: 164

log Kom : 1.73-3.23

Vapour Pressure, 1270 Pa (1.27 kPa)

Half-life (hr) air : 0.24-85.6

Half-life (hr) H2O surface water : 5-240 Half-life (hr) H2O ground : 144-5472 Half-life (hr) soil : 72-240 Henry's Pa m3 /mol: 748-887

ThOD: 3.17 BCF: 3.15-146 log BCF: 1.19-2.67

Water solubility, 169 mg/l at 25 C

Henry's atm m3 /mol: 8.44E-03

Environmental fate:

Ethylbenzene partitions to air from water and soil, and is degraded in air. Ethylbenzene is volatile and when released will quickly vaporize. Photodegradation is the primary route of removal in the environment. Photodegradation is estimated with a half-life of 1 day. Ethylbenzene is considered inherently biodegradable and removal from water occurs primarily by evaporation but in the summer biodegradation plays a key role in the removal process. Level I and Level III fugacity modeling indicate that partitioning is primarily to the air compartment, 98 and 96%, respectively. Ethylbenzene is inherently biodegradable in water and in soil under aerobic conditions, and not rapidly biodegradable in anaerobic conditions. Ethylbenzene is expected to be moderately adsorbed to soil.

Based on measured data, ethylbenzene is not expected to bioaccumulate (BCF 1.1-15).

Ecotoxicity

In acute aquatic toxicity testing LC50 values range approximately between 1 and 10 mg/l. In acute aquatic fish tests (fresh water species), the 96-hr LC50 for *Pimephales promelas* and *Oncorhynchus mykis*s are 12.1 and 4.2 mg/L, respectively. Data are available in the saltwater species *Menidia menidia* and give results within the same range as for the fresh water species with a 96-hr LC50 = 5.1 mg/L. In fresh water invertebrate species *Daphnia magna* and *Ceriodaphia dubia*, 48-hr LC50 values were 1.81 and 3.2 mg/L, respectively. Additional data is available in the saltwater species *Crangon franciscorium* (96-hr LC50 = 0.49 mg/L) and *Mysidopsis bahia* (96-hr LC50 = 2.6 mg/L). In 96-hr algal toxicity testing, results indicate that ethylbenzene inhibits algae growth in *Selenastrum capricornatum* at 3.6 mg/L and in *Skeletonema costatum* at 7.7 mg/L.

DO NOT discharge into sewer or waterways.

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)
ethylbenzene	HIGH (Half-life = 228 days)	LOW (Half-life = 3.57 days)
toluene	LOW (Half-life = 28 days)	LOW (Half-life = 4.33 days)
cumene	HIGH	HIGH

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
xylene	MEDIUM (BCF = 740)
ethylbenzene	LOW (BCF = 79.43)
toluene	LOW (BCF = 90)
cumene	LOW (BCF = 35.5)

12.4. Mobility in soil

Ingredient	Mobility
ethylbenzene	LOW (KOC = 517.8)
toluene	LOW (KOC = 268)
cumene	LOW (KOC = 817.2)

12.5.Results of PBT and vPvB assessment

	P	В	Т
Relevant available data	Not Applicable	Not Applicable	Not Applicable
PBT Criteria fulfilled?	Not Applicable	Not Applicable	Not Applicable

12.6. Endocrine Disruption Properties

Not Available

12.7. Other adverse effects

Not Available

SECTION 13 Disposal considerations

13.1. Waste treatment methods

Product / Packaging disposal

- Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.

▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ► Reduction
- ► Reuse

- ► Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Waste treatment options

Not Available

Sewage disposal options

Not Available

SECTION 14 Transport information

Labels Required

Limited Quantity: 4226-55ML, 4226-1L, 4226-4L

Land transport (ADR-RID)

zana tranoport (/tb/t ttib)		
14.1. UN number	1263	
14.2. UN proper shipping name	PAINT or PAINT RELATED MATERIAL	
14.3. Transport hazard class(es)	Class 3 Subrisk Not Applicable	
14.4. Packing group		
14.5. Environmental hazard	Not Applicable	
14.6. Special precautions for user	Special provisions 163; 223; 367 Limited quantity 5 L	

Air transport (ICAO-IATA / DGR)

14.1. UN number	1263			
14.2. UN proper shipping name	Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds)			
14.3. Transport hazard class(es)	ICAO/IATA Class	3		
	ICAO / IATA Subrisk	Not Applicable		
	ERG Code	ERG Code 3L		
14.4. Packing group				
14.5. Environmental hazard	Not Applicable			
	Special provisions		A3 A72 A192	
	Cargo Only Packing Instructions		366	
	Cargo Only Maximum Qty / Pack		220 L	
14.6. Special precautions for user	Passenger and Cargo Packing Instructions		355	
	Passenger and Cargo Maximum Qty / Pack		60 L	
	Passenger and Cargo Limited Quantity Packing Instructions		Y344	
	Passenger and Cargo Limited Maximum Qty / Pack		10 L	

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	1263		
14.2. UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
14.3. Transport hazard class(es)	IMDG Class 3		
	IMDG Subrisk Not Applicable		
14.4. Packing group			

14.5. Environmental hazard	Not Applicable	
14.6. Special precautions for user	EMS Number	F-E , S-E
	Special provisions	163 223 367 955
	Limited Quantities	5 L

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
xylene	Not Available
ethylbenzene	Not Available
toluene	Not Available
cumene	Not Available

14.9. Transport in bulk in accordance with the ICG Code

Product name	Ship Type
xylene	Not Available
ethylbenzene	Not Available
toluene	Not Available
cumene	Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

xylene is found on the following regulatory lists

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)
EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List
of Substances

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

Europe EC Inventory

ethylbenzene is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

Europe EC Inventory

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

UK Workplace Exposure Limits (WELs)

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans

UK Workplace Exposure Limits (WELs)

toluene is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)

EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

Europe EC Inventory

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex $\rm VI$

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

UK Workplace Exposure Limits (WELs)

cumene is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

Europe EC Inventory

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans

UK Workplace Exposure Limits (WELs)

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

······································		
National Inventory	Status	

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (xylene; ethylbenzene; toluene; cumene)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 Other information

Revision Date	11/05/2021
Initial Date	30/07/2017

Full text Risk and Hazard codes

H225	Highly flammable liquid and vapour.
H304	May be fatal if swallowed and enters airways.
H312	Harmful in contact with skin.
H332	Harmful if inhaled.
H361d	Suspected of damaging the unborn child.
H373	May cause damage to organs through prolonged or repeated exposure.
H411	Toxic to aquatic life with long lasting effects.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

RCI: National Chemical Inventory
FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Reason for Change

A-2.00 - New SDS format